Quelle: ZSW
  • 01.03.2019

CIGS-Dünnschicht-Photovoltaik ist eine Schlüsseltechnologie für die globale Energiewende

Ein neues Whitepaper der Forschungsinstitute ZSW und HZB zeigt: CIGS-Dünnschicht-Solarzellen besitzen großes Potenzial für Klimaschutz und Wirtschaftswachstum. CIGS-Dünnschichtmodule bieten hohe Leistung zu geringen Kosten, und ihre Herstellung benötigt wenig Energie. Außerdem erlauben CIGS-Module auch ästhetisch anspruchsvolle Gestaltungen in Gebäuden und Fahrzeugen. Damit hat CIGS erhebliche Vorteile gegenüber anderen Technologien. Das neue Whitepaper beschreibt Stärken und Einsatzmöglichkeiten von CIGS und die daraus resultierenden großen Chancen auch für die Wirtschaft.

CIGS ist ein Halbleitermaterial aus den Elementen Kupfer, Indium, Gallium und Selen. Seine Eigenschaften sind bemerkenswert: Dünnschicht-Solarzellen auf CIGS-Basis übertreffen alle anderen Dünnschicht-PV-Technologien mit einem Zellwirkungsgrad von 23,35% auf der Zell- und 17,5% auf der Modulebene. Die Produktionskosten von CIGS sind im Vergleich zu anderen PV-Technologien in Bezug auf Investitionen und insbesondere auf die Betriebskosten sehr wettbewerbsfähig. Und unter gestalterischen Gesichtspunkten sind CIGS-Module sowohl in der rein schwarzen Standardform als auch in den farbigen oder gemusterten Varianten konventionellen Modulen weit überlegen.

Diese Eigenschaften ermöglichen den Einsatz von CIGS in einer Vielzahl von Anwendungen, für die andere Technologien ungeeignet wären. Neben Dach- oder Großflächen, bei denen CIGS mit anderen PV-Technologien konkurrenzfähig ist, eignet es sich besonders für die Integration in Gebäude, zum Beispiel als Fassaden-, Fenster- oder Dachmaterial. Beim Einsatz auf flexiblen Substraten wie Stahl oder Polyimid können leichte CIGS-Module auch problemlos auf dem Dach von Fahrzeugen, z.B. Elektroautos, Bussen, Lastwagen, Schiffen oder Zügen, angebracht werden.

In Bezug auf die Umweltauswirkungen schneidet CIGS auch im Vergleich mit anderen Solarzell-Technologien hervorragend ab. Der CO2-Fußabdruck beträgt nur 12 bis 20 Gramm CO2-Äquivalent pro Kilowattstunde, was deutlich unter dem von kristallinem Silizium (50 bis 60 g) und natürlich deutlich unter dem von fossilen Technologien (700 bis 1.000 g) liegt. Die energetische Amortisationszeit beträgt weniger als 12 Monate und ist damit ebenfalls deutlich geringer als bei kristallinem Silizium (12 bis 18 Monate). Darüber hinaus kann CIGS mit geringem Aufwand und in hoher Qualität recycelt werden, sodass die anstehenden End-of-Life-Normen in der Europäischen Union und anderen Ländern erfüllt werden können.

Mit diesen Eigenschaften ist CIGS bestens positioniert, um die Anforderungen zukünftiger Energiesysteme zu erfüllen. Für Investoren bietet die CIGS-Technologie daher ein hochattraktives Geschäftsfeld. Mit CIGS ist es möglich, voll integrierte Produktionsanlagen mit hohem Automatisierungsgrad zu bauen. Und es gibt weiteres Potenzial für Kostensenkungen, insbesondere bei den Betriebskosten. Europa verfügt über Lieferanten für modernste Produktionsanlagen sowie über exzellente CIGS-Forschungseinrichtungen, die untereinander bestens vernetzt sind, und bietet damit ein ideales »Ökosystem« für die Weiterentwicklung dieser Technologie.

Um dieses einzigartige Ökosystem zu nutzen und das enorme Potenzial von CIGS neben anderen PV-Technologien sowohl für den Klimaschutz als auch für die Wirtschaft zu heben, brauchen wir günstige politische Rahmenbedingungen. Die Ausbauziele für die Photovoltaik auf deutscher und europäischer Ebene müssen erhöht und regulatorische Barrieren wie der 52-Gigawatt-Deckel beseitigt werden, damit die PV, insbesondere die Dünnschicht-PV, die globale Energiewende vorantreiben kann.


Über das ZSW

Das Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) gehört zu den führenden Instituten für angewandte Forschung auf den Gebieten Photovoltaik, regenerative Kraftstoffe, Batterietechnik und Brennstoffzellen sowie Energiesystemanalyse. An den drei ZSW-Standorten Stuttgart, Ulm und Widderstall sind derzeit rund 260 Wissenschaftler, Ingenieure und Techniker beschäftigt. Hinzu kommen 90 wissenschaftliche und studentische Hilfskräfte.

Das ZSW ist Mitglied der Innovationsallianz Baden-Württemberg (innBW), einem Zusammenschluss von 13 außeruniversitären, wirtschaftsnahen Forschungsinstituten.


Über das HZB

Am Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) werden komplexe Materialsysteme untersucht, die dazu beitragen, die Energiewende zu bewältigen. Zum HZB-Portfolio gehören Solarzellen, solare Brennstoffe, Thermoelektrika sowie Materialien für neue energieeffiziente Informationstechnologien (Spintronik). Die Forschung an diesen Energie-Materialien ist eng an den Betrieb und die Weiterentwicklung der Photonenquelle BESSY II geknüpft. Ein wichtiger Forschungsansatz liegt dabei auf Dünnschichttechnologien. Am HZB sind 1150 Mitarbeitende beschäftigt.


Wissenschaftliche Ansprechpartner

Prof. Dr.-Ing. Michael Powalla
Zentrum für Sonnenenergie- und
Wasserstoff-Forschung Baden-Württemberg (ZSW)
Meitnerstr. 1
70563 Stuttgart
Telefon: 0711 7870-263
E-Mail: michael.powalla@zsw-bw.de


Prof. Dr. Rutger Schlatmann
Helmholtz Zentrum Berlin (HZB)
Hahn-Meitner-Platz 1
14109 Berlin
Telefon: 030 8062-15680
E-Mail: rutger.schlatmann@helmholtz-berlin.de

 


BauSV-APP

zur Informationsseite BauSV-App/BauSV-E-Journal

Die Zeitschrift »Der Bausachverständige« gibt es auch digital für Tablet und Smartphone.

mehr Informationen

NEWSLETTER

Der BauSV-Newsletter bietet Ihnen alle zwei Monate kostenlos aktuelle und kompetente Informationen aus der Bausachverständigenbranche.

zur Newsletter-Anmeldung

Zentrum für Sonnenenergie-
und Wasserstoff-Forschung
Baden-Württemberg (ZSW)

Meitnerstr. 1
70563 Stuttgart
Telefon: 0711 7870-0
Telefax: 0711 7870-100
E-Mail: info@zsw-bw.de
Internet: www.zsw-bw.de

Helmholtz-Gemeinschaft
Deutscher Forschungszentren e.V.
Hahn-Meitner-Platz 1
14109 Berlin
E-Mail: info@helmholtz-berlin.de
Internet: www.helmholtz-berlin.de

 

 

Zurück zum Seitenanfang